Antimicrobial polymers as synthetic mimics of host-defense peptides.
نویسندگان
چکیده
Antibiotic-resistant bacteria 'superbugs' are an emerging threat to public health due to the decrease in effective antibiotics as well as the slowed pace of development of new antibiotics to replace those that become ineffective. The need for new antimicrobial agents is a well-documented issue relating to world health. Tremendous efforts have been given to developing compounds that not only show high efficacy, but also those that are less susceptible to resistance development in the bacteria. However, the development of newer, stronger antibiotics which can overcome these acquired resistances is still a scientific challenge because a new mode of antimicrobial action is likely required. To that end, amphiphilic, cationic polymers have emerged as a promising candidate for further development as an antimicrobial agent with decreased potential for resistance development. These polymers are designed to mimic naturally occurring host-defense antimicrobial peptides which act on bacterial cell walls or membranes. Antimicrobial-peptide mimetic polymers display antibacterial activity against a broad spectrum of bacteria including drug-resistant strains and are less susceptible to resistance development in bacteria. These polymers also showed selective activity to bacteria over mammalian cells. Antimicrobial polymers provide a new molecular framework for chemical modification and adaptation to tune their biological functions. The peptide-mimetic design of antimicrobial polymers will be versatile, generating a new generation of antibiotics toward implementation of polymers in biomedical applications.
منابع مشابه
Ternary Nylon-3 Copolymers as Host-Defense Peptide Mimics: Beyond Hydrophobic and Cationic Subunits
Host-defense peptides (HDPs) are produced by eukaryotes to defend against bacterial infection, and diverse synthetic polymers have recently been explored as mimics of these natural peptides. HDPs are rich in both hydrophobic and cationic amino acid residues, and most HDP-mimetic polymers have therefore contained binary combinations of hydrophobic and cationic subunits. However, HDP-mimetic poly...
متن کاملAntimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach.
Synthetic Mimics of Antimicrobial Peptides (SMAMPs) imitate natural host-defense peptides, a vital component of the body's immune system. This work presents a molecular construction kit that allows the easy and versatile synthesis of a broad variety of facially amphiphilic oxanorbornene-derived monomers. Their ring-opening metathesis polymerization (ROMP) and deprotection provide several series...
متن کاملSynthetic Polymers Active against Clostridium difficile Vegetative Cell Growth and Spore Outgrowth
Nylon-3 polymers (poly-β-peptides) have been investigated as synthetic mimics of host-defense peptides in recent years. These polymers are attractive because they are much easier to synthesize than are the peptides themselves, and the polymers resist proteolysis. Here we describe in vitro analysis of selected nylon-3 copolymers against Clostridium difficile, an important nosocomial pathogen tha...
متن کاملImmune modulation by multifaceted cationic host defense (antimicrobial) peptides.
Cationic host defense (antimicrobial) peptides were originally studied for their direct antimicrobial activities. They have since been found to exhibit multifaceted immunomodulatory activities, including profound anti-infective and selective anti-inflammatory properties, as well as adjuvant and wound-healing activities in animal models. These biological properties suggest that host defense pept...
متن کاملIdentification of synthetic host defense peptide mimics that exert dual antimicrobial and anti-inflammatory activities.
A group of synthetic antimicrobial oligomers, inspired by naturally occurring antimicrobial peptides, were analyzed for the ability to modulate innate immune responses to Toll-like receptor (TLR) ligands. These synthetic mimics of antimicrobial peptides (SMAMPs) specifically reduced cytokine production in response to Staphylococcus aureus and the S. aureus component lipoteichoic acid (LTA), a T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2013